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‘lhis paper describes an example of flow past a thin axisymzetric body of 
a stream with highly supersonic velocities (M >> 11, when the external 
flow is appreciably influenced by the boundary layer. 

In his paper [ 1 1 Stewartson showed for a flat plate, and in another 

paper [ 2 1 it was shown for the general case, that the region of flow 
between the surface of the body ano the density discontinuity is divided 
into two zones, with rather clear boundaries: the viscous zone, where 

the boundary layer equations hold, and the nonviscous zone, the flow in 
which is described by the equations of motion of an ideal compressible 

gas, simplified on the basis of the law of plane cross-sections. It was 

shown also that the transport of mass through the boundary layer is 
negligibly small in comparison with the total transport of gas through 
the perturbed region, so that approximately it can be assumed that the 
impinging stream flows round a certain fictitious body, the surface of 

which coincides with the surface of the boundary layer. 

Inside the boundary layer high temperatures are possible, so that in 
discussion of this region the thermodynamic relation is given as general 
a form as possible. CArtside the boundary layer we can assume a perfect 

gas with a constant adiabatic index. 

The equations of the hypersonic boundary layer on a thin axisymnetric 
body at the coordinates XL, yL, where x is measured from the nose along 
a generator of the body, whilst y is measured from the surface of the 
body along the normal to it, have the form [ 2 1 
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Here ulfx,, VU, are the components of the velocity along the x and y 
axes, respectively, iUm2, pp,U_’ p pp,, NIL, are the enthalpy, pressure, 
density and viscosity of the gas, CT is the Prandtl number, rL is the 
distance of the point from the axis of the body. The subscript o relates 
to the homonymous dimensional quantity in the impinging strean. For a 
thin body r = rW(n) + y, where rob) is the form of the generator. 

Let us make a transformation of the variables from x, y, to X, r, and 
introduce subsequently Ibrodnitsin’s variables generalised to the axisym- 
metric case: 

5 = + f pr,%, 

r 

V)= prdr 
s (21 

0 rta 

Then Equations (1) take the form 

(3) 

Let us assume that the equation of state has the form p/p = F( il. We 

shall assume also that f and o are functions only cf enthalpy. * 

It is evident that f - 1 and F cfr I (I< - 11,‘~ 3 i . Close to the surface 
of the boundary layer r = rg and outside this F = I (K - If/~3 i, On the 
surface of the boundary layer i = i, * rS2: inside it i b 1. Cansequentfy, 
without any particular error in the final solution we can** take i8 = 0, 

In actual fact, for dissociated air the functions f, F and u depend 
weakly on the pressure, but this dependence will be neglected. 

Since the functions f and c vary only slowly anyway (they are usually 

taken as constants), when i8 z 0 they can be regarded as constants, 
with their respective proper values. 



It will be shown below that the solution of the System (3) in the case 
under consideration has an asymptotic character and that the quantity 
has therein a finite limit as q + -. On this basis let us take for the 

r6 

System (3) the following boundary conditions*: 

u=l, i=O when q--+ 00 (4) 

u = 2’1 = 0, i=i,=const or - it =0 when’?=0 

We shall seek conditions under which the solution will have the form 

u = ‘p’ (Cl, i = i (t;), 
l-3 

Y.=2Mfi 

Substituting (5) in (31, we find that the functions 
should in this case satisfy the conditions (4) and the 

(Yjq) f ?‘9”== 2mF (i) 
( 
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( ) y $ i’ ‘+ ‘pi’ + y/y”% =: - 2mcp’F (i) 

(5) 
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(7) 

Here the function Y according to Formulas (2) has the form 

Analysing FIations (6)-(71, it is easily seen that the functions $<‘- 
and i decrease as [ + 00 not more slowly than exp( -II(*), where the con- 
stant h is equal to the value of the quantity CT/ 2 Yf at the surface of 
the boundary layer. Consequently, the integral J(c) in Formula (8) con- 
verges rather quickly, and the use of the above conditions for a finite 
value of rs 8s 5 -, 00 is indeed justified. 

The solution in the form (5) will exist, evidently, in this case, if 

the following conditions are fulfilled: 

l The condition ig E 0 was used by Stewartson in his solution of the 
problem of an infinite plate in a gaseous space suddenly set in motion 
with a high supersonic velocity [3 I. He showed that the use of this 
condition does not involve an essential error in the determination of 
the parameters in the bottom portion of the boundary layer and the 
pressure on the plate. 



Hypersonic flow post on oxisyrnatric body 807 

Expanding the relations (9) and (21, we obtain (a and b are constants) 

rul = axn, rs = aaxns p = bxlpzn (n = $-m, a = 1/l + kJ (oo)) (10) 

Accordingly, for arbitrary values of the quantities n, a and b under 
the assumptions which have been made, there exist automodelling (similar- 

ity) solutions of the equations of the axisymmetric boundary layer. We 
notice that when k << 1 the existence of automodelling solutions requires 
only the single condition p = bx2’. 

Let us introduce the formula for v,, = v + rI’u - the component of velo- 
city in the boundary layer along the axis of r. In the variables x and r, 
we have 

a ’ 
P’“o = - az s 

fw 

Determining the derivative d(/dx from (81, we obtain the formula 

Letting 4’ -+ DO in this formula, we have v,, = rg’i 

Hence, from the condition of continuity of the velocity field, it 

follows that in our problem the surface of the boundary layer is, as has 
already been mentioned above, a streamline for the external flow. In this 
case the solution of the equations of the nonviscous region are, as is 

well-known, automodelling with r8 = const x X” and the pressure at the 
surface of the boundary layer is given by p = crg’2, where c depends only 
on n. Comparing with (101, we have 

3 
n=- 

4 ’ 
b = ca2a%2 (11) 

For K = 1.4 according to the paper [ 4 1 the constant c = 0.91. Accord- 
ing to Newtonian theory c = 1. 

Accordingly, for flow at highly supersonic velocities past thin axi- 
symnetric bodies with generators rip = const x x 3’4 the solution of the 
problem of the interaction between the boundary layer and the external 
flow is automodelling (self-similar). We notice that in the plane case 
the equation of the profile leading to automodelling solutions is also 

rlo = const x 3~~~~. 

Equations (6)-(71, in contrast to the plane case, are integro-differ- 
enti al equations. The parameter k entering the equations is determined 
according to Equations (8)-(U) by the relation 
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Since the quantity J(m) depends on k, then Equations (6)-(7), general- 
ly speaking, must be solved simultaneously with (12). If in Equations 
(6)-(71 we set f = const x (ilk, o = const and F = [ K/(K - l)] i, then 
according to (12) the solution of the problem in the case under consider- 
ation in agreement with the similarity law f 2 ] is determined only by the 
parameters x and Mu. 

For small x the solution indicated above is not valid, since then the 
condition u = 1 is.not fulfilled in the nonviscous region. Moreover, in 
the vicinity of the nose the shock wave is detached, and the gas behind 
the portion of it determined by the condition rs’. >t 1, forms in the ideal 
gas at the surface of the body a high entropy layer, the mass flow in 
which is I)* Q pJ~‘~L~(aa)~. In this layer [ 5 I we have i = 1, and as long 
as the boundary layer, the mass flow in which $ = p,UmL2ka2a4x, develops 
inside the high entropy layer, the automodelling solution will not hold. 
When $ >> $e and, consequently, when x >> a6a4/k, the high entropy layer 
will obviously not influence the characteristics of the boundary layer 
and the solution obtained above is valid. 

Footnote (added in proof). After submission of this note to the press 
the author became aware of the paper [ 6 3. In it the sane problem is con- 
sidered by means of the increase in thickness of the body by the thickness 
of the boundary layer formed (with u = 1 and in the absence of heat con- 
duction), which in turn is bound up with the pressure by means of the in- 
tegral relations. In this paper it is deduced, strictly speaking in- 

corrently, that there exist, besides the case n = 3/4, automodelling 
solutions when r-v = const x xR << rs, where k > 0 is arbitrary. 
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